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Abstract— Visual pre-training with large-scale real-world
data has made great progress in recent years, showing great
potential in robot learning with pixel observations. However,
the recipes of visual pre-training for robot manipulation tasks
are yet to be built. In this paper, we thoroughly investi-
gate the effects of visual pre-training strategies on robot
manipulation tasks from three fundamental perspectives: pre-
training datasets, model architectures and training methods.
Several significant experimental findings are provided that are
beneficial for robot learning. Further, we propose a visual
pre-training scheme for robot manipulation termed Vi-PRoM,
which combines self-supervised learning and supervised learn-
ing. Concretely, the former employs contrastive learning to
acquire underlying patterns from large-scale unlabeled data,
while the latter aims learning visual semantics and temporal
dynamics. Extensive experiments on robot manipulations in
various simulation environments and the real robot demonstrate
the superiority of the proposed scheme. Videos and more details
can be found on https://explore-pretrain-robot.
github.io.

I. INTRODUCTION

The past years have witnessed substantial progress in
visual representation learning based on deep neural networks.
After pre-training on large-scale visual data, the neural
network is subsequently employed as a general-purpose
encoder to extract visual representations for many tasks, e.g.,
image segmentation [1], object detection [2] and autonomous
driving [3], showing its strong generalization ability, while
also highlighting its potential in robot manipulation.

Learning from visual observations for robot manipulation
is known as a challenging task that requires a thorough
understanding of both visual semantics and sequential pat-
terns of observations. A common method is to train the
visual encoder and model-based policy from scratch in an
end-to-end manner with in-domain data [4], [5]. Despite its
effectiveness to some degree, such a method requires training
on a large number of observation-action samples, which
may limit its wide applications. Therefore, pre-training the
visual encoder with large-scale off-the-shelf data from the
real world can serve as an alternative. Benefiting from its
strong generalization ability, the pre-trained visual encoder
is expected to generalize across a range of robot manipulation
tasks and enable data-efficient learning.

Recently, visual pre-training on large-scale real-world data
for robot learning has attracted increasing interest. Prominent
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Fig. 1. General path of visual pre-training for robot manipulation.

performance gains reported on prior works [6], [7] show
its great potential in learning robot control from pixels.
Despite the claimed advantage, these works differ in pre-
training data, methods and models. So it remains an open
question about which types of data, pre-training methods and
models can better assist robot manipulation. A system-level
benchmark on the profits of visual pre-training is in demand.

In this paper, as shown in Figure 1, we first conduct
extensive studies on visual pre-training from three funda-
mental aspects: datasets, models and methods that may
influence the performance of robot learning. Hopefully, these
can facilitate future research in the community. Based on
empirical findings, we propose a visual pre-training scheme
oriented for robot manipulations, which sequentially trains a
visual encoder using self-supervised learning and supervised
fine-tuning. Concretely, the visual encoder is first pre-trained
based on contrastive learning [8], allowing the trained model
to acquire sequential patterns implicitly for the input data.
Then, supervised learning is applied by constructing pseudo-
labels and temporal labels to encourage the visual encoder
further to perceive visual semantics and temporal dynamics.
In addition, we propose a new dataset named EgoNet, which
is created based on Ego4d [9] and contains a large-scale
egocentric video clips rich in human-object interactions.
EgoNet has the potential to serve as a benchmark to pre-
train visual models for robot manipulations.
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Our main contributions are summarized as: (1) We create
the EgoNet dataset, a new benchmark enriched with diverse
scenarios and human-object interactions for robotic visual
pre-training. (2) We fully explore the visual pre-training in
terms of datasets, methods and models, and provide several
key suggestions for robot manipulation tasks. (3) We propose
a novel cascade visual pre-training scheme that enables the
visual encoder to learn sequential patterns, visual semantics
and temporal dynamics from the large-scale real-world data,
and achieves remarkable performance improvement on robot
manipulation tasks.

II. RELATED WORK
A. Vision-Based Robot Learning

The robotic community has long focused on vision-based
learning methods for various robot tasks in the past decade.
Currently, the most prevailing paradigm of vision-based
robot learning is the end-to-end method [5]. With the surge
of deep learning in the last decade, many CNN-based models
have been proposed to enable the visual modality of robots
in manipulation tasks [10], [11]. Furthermore, CNN-RNN
methods [12], [13] are widely adopted to solve the task
of human instruction in natural language. Recently, many
methods [6], [7], [14] based on pre-trained models have been
proposed for robot learning. Several previous methods inves-
tigated the self-supervised pre-training in robot manipulation,
e.g., R3M [6], MVP [7], and MaskViT [14]. These works
focus on one side of visual pre-training, thus calling for a
systematic study.

B. Representation Learning

Self-supervised visual pre-training has been an active
research topic recently, and can learn universal visual repre-
sentations. Visual pre-training aims to learn visual represen-
tations by masked image modeling [15], [16] and contrastive
learning [8], [17]. While the vision-language pre-training
aims to learn the semantic correspondence between different
modalities [18], [19]. Pre-training datasets are significant for
the representation learning. To learn reusable representations
that can generalize well to robotic manipulation tasks, the
interaction between humans and objects needs to be captured.
Recently, a diverse and large-size dataset Ego4D [9] has been
proposed, which contains daily-life activity videos spanning
hundreds of scenarios.

C. Robot Manipulation Benchmarks

With the recent progress in exploiting the pre-trained
models in robotic tasks, a number of robotic manipulation
benchmarks have been introduced to evaluate the perfor-
mance of the pre-trained model. The off-shelf robotic manip-
ulation benchmarks can be categorized into two main kinds
by simulators: RL (Reinforcement Learning) benchmarks
and embodied benchmarks. The RL benchmarks focus on
the training and evaluation of reinforcement learning agents
where a simulated environment with several robot models
and scenarios in limited space is usually provided. Recent
RL benchmarks explore the training and evaluation of robotic

Visual Pre-training

Pre-training Dataset |—'| Model Architecture |——| Pre-training Objective

Pixel Observation H Model Architecture H Policy Network H Behavior Cloning

Robot Manipulation

Fig. 2. The study pipeline of visual pre-training for robot manipulation.

manipulation method in aspects of multi-task training [20],
more realistic scenarios with clutter [21], tasks in higher
complex level [22], more kinds of manipulation forms [23]
and manipulations with linguistic instructions [24], [25].
Meanwhile, the pre-trained models are widely introduced as
solutions to robot manipulation tasks.

III. BENCHMARKING

In this section, we explore key components that affect
the pre-training behaviors and the robot manipulation perfor-
mance, i.e., pre-training datasets, optimization methods, and
model architectures. The study pipeline is shown in Figure 2.
We first pre-train the visual encoder on the pre-training
dataset. Then we adopt typical imitation learning methods
on robot manipulation tasks to verify the effectiveness of
visual representations, where the encoder parameters are
frozen during training. In this way, we could give system-
level studies of each component.

A. Benchmarking Setup

To evaluate the effectiveness of the pre-trained visual en-
coder, we adopt two robot control simulation environments,
i.e., Franka Kitchen [26] and MetaWorld [20], for robot
learning. As shown in the right part of Figure 3, we choose
the same tasks as [6]. Please refer to Section V-A for the
pre-training details and evaluation metrics.

1) Pre-training Dataset: ImageNet [27] has recently been
widely used in self-supervised pre-training for various down-
stream tasks. However, ImageNet lacks dynamic interaction
between objects, making it may be unsuitable to serve as
pre-training data for robot manipulation tasks.

We propose a new benchmark, called EgoNet, to pre-train
visual encoders for robot manipulation. It comprises nearly
500,000 video clips covering hundreds of scenarios and is
rich in human-object interactions. The EgoNet is constructed
based on Ego4D [9]. We experimentally intercept a short clip
with a duration of 1s for each narration. With this strategy,
a total of 0.503 million video clips rich in human-object
interactions are collected. Note that the video in Ego4D
has a frame rate of 30 fps. After a 10-fold uniform down-
sampling, EgoNet is obtained that contains about 1.5 million
video frames in total, making the training samples number
comparable with ImageNet.

2) Model Architecture: The architecture of visual encoder
is also an important element in determining the performance
of robot manipulation tasks. To explore its effect, we choose



TABLE I
EFFECTS OF PRE-TRAINING DATASETS ON ROBOT MANIPULATION ON
TWO SIMULATORS, I.E., FRANKA KITCHEN AND METAWORLD, USING
SUCCESS RATE (%) AS THE METRIC.

Model | Dataset | Franka Kitchen |  MetaWorld
ResNet-50 ImageNet 31.1 54.1
ResNet-50 EgoNet 40.5 61.2

TABLE II

EFFECTS OF MODEL ARCHITECTURES ON ROBOT MANIPULATION.

Model | Dataset | Franka Kitchen |  MetaWorld
ResNet-34 EgoNet 22.6 52.4
ResNet-50 EgoNet 40.5 61.2
ResNet-101 EgoNet 40.0 61.6

three typical models, namely convolution-based ResNet-
34 [28], ResNet-50 [28], and ResNet-101 [28], which have
been the defacto standard for visual representation extraction.
In this way, we could provide insight into which architectures
are more beneficial for robot manipulation tasks.

3) Pre-training Method: The learning objective directly
determines the type of representations that the model can
learn from a dataset. Contrastive learning and masked image
modeling, the two most prevalent pre-training methods in
self-supervised learning, are naturally the main exploration
goals in this work. Contrastive learning aims to encourage the
feature similarity between two different augmented views of
the same image but suppress the similarity between different
images. Masked image modeling resorts to reconstructing
the randomly masked patches of the input image. In this
work, we choose MoCo-v3 [8] and MAE (Masked Au-
toEncoder) [15] for contrastive learning and masked image
modeling, respectively.

B. Main Observations

1) Pre-training Dataset: EgoNet is more powerful than
ImageNet. We pre-train visual encoder (i.e., ResNet-50)
on different datasets, i.e., ImageNet and EgoNet, using the
contrastive learning method (MoCo-v3), and observe their
performance on the robot manipulation tasks. From Table I,
we can see that the model pre-trained on EgoNet achieve bet-
ter performance on robot manipulation tasks. Obviously, the
robot favors the interaction-related knowledge and temporal
relationships contained in the video in terms of manipulation
tasks. In addition, the egocentric natural images in EgoNet
have much more global context about the world, which
means richer visual features can be learned.

2) Model Architecture: ResNet-50 performs better.
From Table II, we can observe that ResNet-50 and ResNet-
101 perform better than ResNet-34 on the robot manipulation
tasks in both simulation environments pre-trained on EgoNet.
In addition, there is no performance improvement as the
model increases from ResNet-50 to ResNet-101. Further-
more, recent work suggests that pre-training ViT [29] models
with larger pre-trained datasets can achieve better results.

TABLE III
EFFECTS OF PRE-TRAINING METHODS ON ROBOT MANIPULATION.

Learning Method |  Dataset | Franka Kitchen | MetaWorld
MAE [15] ImageNet 11.4 50.3
MoCo-v3 [8] ImageNet 31.1 54.1
MAE [15] EgoNet 18.0 49.8
MoCo-v3 [8] EgoNet 40.5 61.2

3) Pre-training Method: Contrastive learning is pre-
ferred. As shown in Table III, MoCo-v3 outperforms MAE
on both ImageNet and EgoNet datasets, demonstrating the
effectiveness of contrastive learning compared to masked
image modeling for manipulation. This result also suggests
that the visual semantics acquired by contrastive learning are
more important for robot manipulation than the structural
information learned by masked image modeling.

C. Summary

Through the aforementioned explorations on various pre-
training datasets, model architectures and pre-training meth-
ods, three key conclusions could be drawn:

o Visual pre-training with human-object interaction data
is of great importance for robot manipulation.

o Convolution-based ResNet-50 is preferred in retaining
visual knowledge for robot manipulation.

« The sequential pattern and semantic information learned
by contrastive learning are more effective.

IV. PROPOSED APPROACH

Based on the above explorations, we propose Visual
Pre-training scheme for Robot Manipulation (Vi-PRoM),
which pre-trains ResNet-50 on the EgoNet dataset to extract
comprehensive visual representations for robot manipulation.
Specifically, we first employ contrastive learning to acquire
human-object interaction patterns from the EgoNet dataset
in a self-supervised manner. Then two additional learning
objectives, i.e., visual semantics predicting and temporal
dynamics predicting, are proposed to further enrich the
encoder. Figure 3 shows a basic pipeline of the proposed
Vi-PRoM. Note that we do not need manually annotate the
labels to learn both visual semantics and temporal dynamics.

A. Contrastive Self-supervised Learning

We hypothesize a good visual representation should have
the ability to distinguish different scenes. Therefore, we use
contrastive learning as our self-supervised paradigm to let
the model learn rich and general visual representations. The
contrastive objective function pulls features generated by
similar images together and pushes the features generated by
different images away. Specifically, we sample a minibatch
of images and minimize the InfoNCE loss [30].

B. Supervised Learning

With the learned representation from contrastive learning,
it is imperative to learn visual semantics and temporal
dynamics to generalize well for robot manipulation.
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Fig. 3. The pipeline of our Vi-PRoM. The EgoNet dataset is first constructed to serve as pre-training data. We first pre-train the ResNet-50 with contrastive
learning, enabling the model to learn universal visual representations. Then, frame-order and pseudo-label predicting tasks are jointly applied to encourage
the model to capture temporal and semantic visual representations. Note that the pseudo-labels are automatically generated by the ResNet-101 model
pre-trained on ImageNet without manual labeling. Finally, the pre-trained model is utilized to extract visual representations for robot manipulation tasks.

1) Learning Visual Semantics: We introduce a pseudo-
label predicting task to fine-tune the learned backbone,
encouraging the model to learn better visual semantic rep-
resentations. Specifically, we employ a ResNet-101 model
supervised on ImageNet to generate pseudo labels for
EgoNet. Then, the pseudo label is used to fine-tune our self-
supervised learned backbone with the cross-entropy loss:

N
Lys=—Ep Y  T(w:)log(h(f(x:))), (1)

i=1

where D is the EgoNet dataset, T is the ResNet-101 network
to generate pseudo labels for each sample z;, f is the
backbone, and h; is a classification head.

2) Predicting Temporal Dynamics: Robot manipulation
tasks require predicting the next actions based on current and
historical observations. Thus they are sensitive to temporal
dynamics. We design a frame order prediction task to enable
the model to learn temporal dynamics for each clip of
EgoNet. Given the image set Z = {zg,..., Tk, ..., TN_1}
sampled sequentially from a video clip, we scramble these
images and then predict the original order for the image
x. This task is formulated as a classification problem of
N classes, which is commonly solved by minimizing the
cross-entropy loss:

N-1

L =—Ep Y yklog(ha(f(xx))), 2)

k=0

where ho is a classification head. yj denotes the order of
the image zj, in original image set Z.

3) Joint Training: We combine the visual semantics and
temporal dynamics loss for jointly training:

Etotal = £VS + )\ETD, (3)

where A is the balance coefficient set as 0.33 in practice. In
principle, visual semantics and temporal dynamics predicting
together guide the learning, enabling the model to learn
semantic and temporal visual representations.

C. Robot Imitation Learning

Given the well-trained visual encoder f, the robot utilizes
it to encode visual features of pixel observations for policy
learning. In this work, we employ the typical behavior
cloning (BC) [31] method to imitate expert demonstrations,
where the policy network is parameterized as a two-layer
perceptron.

V. EXPERIMENTS
A. Experimental Setup

To evaluate the pre-trained visual encoder on robot ma-
nipulation tasks, we take it as a frozen module for policy
learning. We train the policy network for 20,000 steps using
a batch size of 32 and an Adam optimizer with a learning
rate of 0.001. Unless otherwise specified, the demonstration
dataset size used for imitation learning is set as 5. In the
PPO experiments, we train for 20 iterations with 10 epochs
per iteration. The reward function we use is similar to [32].
The average of the best success rates on all manipulation
tasks with three different seeds (100, 125, 150) is reported
to measure the performance of the visual encoder.

In the real environment, our robot hardware is mainly
formed by a differential-drive mobile base equipped with a
2d LiDAR and IMU and a 6-DoF arm. A 2-finger parallel
gripper is equipped for contact-rich interactions. Between the
end-effector and the arm, a force torque sensor is installed
to measure the forces and torques experienced by the robot,
which is utilized to stop the robot if any large forces or
torques appear. The robot’s wrist is equipped with an RGBD
camera as its perception unit. The Intel core i7 CPU is chosen
as the computing unit.

B. Main Results

1) Simulation Environments: To demonstrate the effec-
tiveness of our Vi-PRoM, we compare it with the state-of-
the-art visual pre-training methods for robot manipulation.
For fair comparisons, except for the scratch method, whose
visual encoder parameters are randomly initialized, all other
models are pre-trained on our EgoNet dataset and evaluated



TABLE IV
COMPARISON RESULTS WITH THE STATE-OF-THE-ART METHODS.

Method Franka Kitchen MetaWorld
BC [ PPO BC [ PPO
Scratch 22.3 15.2 26.5 28.8
R3M [6] 274 18.3 61.7 38.6
MoCo-v3 [8] 40.5 36.8 61.2 43.6
Vi-PRoM 43.8 39.5 63.5 46.8
TABLE V
ABLATION STUDY ON DIFFERENT MODULES.
Contrastive Visual Temporal Franka MetaWorld
Learning Semantics Dynamics Kitchen
v 40.5 61.2
v v 43.2 62.0
v v 40.7 62.6
v v v 43.8 63.5

with the behavior cloning method. Note that the visual en-
coder for each method is ResNet-50. Experimental results are
reported in Table I'V. It can be seen that our model achieves
the best performance in both simulation environments. In
addition, the performance gains of our Vi-PRoM over the
MoCo-v3, reaching 3.3% and 2.3% in success rate in Franka
Kitchen and MetaWorld, respectively, indicate the value of
explicitly learning visual semantics and temporal dynamics.

To learn the temporal dynamics and visual semantics, R3M
resorts to the time contrastive learning and video-language
alignment. Compared with R3M, our Vi-PRoM shows con-
siderable performance gains, especially in the Franka Kitchen
environment. Notably, in terms of the capacity to learn
visual semantics and temporal dynamics, our pseudo-label
predicting and frame order modeling outperform the time
contrastive learning and video-language alignment.

To further verify the effectiveness of our Vi-PRoM, we
choose the proximal policy optimization (PPO) algorithm
[33] as an alternative to behavior cloning. Experimental
results are provided in Table IV. Our Vi-PRoM consistently
outperforms all competitors on both learning algorithms.

2) Real Robot: We deploy our model on a real robot to
demonstrate its performance in the real environment. In prac-
tice, we test our pre-trained representations on four tasks, i.e.,
opening the door, closing the door, opening
the drawer and closing the drawer. We collect
30 demonstrations for each task. Figure 4 shows two success-
ful cases of our model in the real robot environment. Overall,
benefiting from the powerful representational capability of
Vi-PRoM, the robot is competent for various manipulation
tasks in the real kitchen environment by learning from
demonstrations.

C. Ablation Study

1) Pre-training Components: Table V exhibits the exper-
imental results. When visual semantic learning is absent, the
success rate decreases by 3.1% and 0.9% on Franka Kitchen
and MetaWorld, respectively. Analogously, a drop in success
rate of 0.6% and 1.5% on Franka Kitchen and MetaWorld can

| —— T
_—— ]
-

_— "

T T )

-y | = ] — ]
k P . . Wﬁ
' o AR,

Fig. 4. The real robot is able to successfully open the drawer and the door
with the help of our Vi-PRoM model in a kitchen environment.
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Fig. 5. Effects of demonstration size on robot manipulation tasks.

be observed in the absence of temporal dynamics learning.
These two experimental results demonstrate the importance
of visual semantics learning and temporal dynamics learn-
ing for robot manipulation. Moreover, when both learning
objectives are absent, the success rate of Vi-PRoM suffers
from considerable performance degradation. Therefore, the
effectiveness of the collaboration between visual semantic
learning and temporal dynamics learning is proved.

2) Model Scalability: We also investigate the scalability
of Vi-PRoM. As shown in Figure 5, in both the Franka
Kitchen and MetaWorld simulation environments, the suc-
cess rate of Vi-PRoM improves steadily as the size of the
demonstration data increases. After training on the larger
expert demonstration dataset, our proposed Vi-PRoM model
shows its scalability on robot manipulation tasks.

3) Other Models: We also report experimental results
of directly taking the popular pre-trained models as visual
encoders for robot manipulation, as shown in Table VI.
ImageNet Supervised [27] is the ResNet-50 pre-trained for
ImageNet classification task. MDETR [34] is the ResNet-
101 pre-trained on large-scale image-text pairs. CLIP [35] is
the ResNet-50 trained to align the image representation with
the paired text. MAE is the ViT-Base trained on ImageNet.
MVP is the ViT-large trained on Ego4D. It can be seen that
all these models largely lag behind our Vi-PRoM model.

VI. DISCUSSION AND LIMITATION

In this paper, we have explored three crucial components
that affect the pre-trained model on robot manipulation tasks.
Key conclusions are drawn that robot manipulation prefers
human-object interaction dataset, convolution-based ResNet-
50 network, as well as temporal and semantic information.
We further propose the Vi-PRoM for robot manipulation. Ex-
tensive experiments on simulators and the real environment
demonstrate its superiority.

Although our pipeline is effective, there are still many
issues to be further explored. First, training visual encoders



TABLE VI

PERFORMANCE OF OFFICIAL MODELS ON ROBOT MANIPULATION TASKS.

Method |  Franka Kitchen | MetaWorld
ImageNet Supervised [27] 16.5 51.9
MDETR [34] 19.8 59.5
CLIP [35] 11.0 53.0
MAE [15] 11.4 50.3
MVP [7] 114 53.2
MoCo-v3 [17] 31.1 54.1
Vi-PRoM 43.8 63.5

directly on video clips has the potential to learn better
temporal dynamics. Then using larger pre-training datasets
is also worth exploring in the future. Finally, currently visual
encoders are pre-trained on real-world data but evaluated
in simulation environments. The significant gap can lead to
some unexpected results, and also inspires us to consider
establishing an evaluation benchmark from the real environ-
ment to facilitate research.
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